Far infrared therapy inhibits vascular endothelial inflammation via the induction of heme oxygenase-1.
نویسندگان
چکیده
OBJECTIVE Survival of arteriovenous fistulas (AVFs) in hemodialysis patients is associated with both far infrared (FIR) therapy and length polymorphisms of the heme oxygenase-1 (HO-1) promoter. In this study, we evaluated whether there is an interaction between FIR radiation and HO-1 in regulating vascular inflammation. METHODS AND RESULTS Treatment of cultured human umbilical vein endothelial cells (ECs) with FIR radiation stimulated HO-1 protein, mRNA, and promoter activity. HO-1 induction was dependent on the activation of the antioxidant responsive element/NF-E2-related factor-2 complex, and was likely a consequence of heat stress. FIR radiation also inhibited tumor necrosis factor (TNF)-alpha-mediated expression of E-selectin, vascular cell adhesion molecule-1, intercellular cell adhesion molecule-1, monocyte chemoattractant protein-1, interleukin-8, and the cytokine-mediated adhesion of monocytes to ECs. The antiinflammatory action of FIR was mimicked by bilirubin, and was reversed by the HO inhibitor, tin protoporphyrin-IX, or by the selective knockdown of HO-1. Finally, the antiinflammatory effect of FIR was also observed in patients undergoing hemodialysis. CONCLUSIONS These results demonstrate that FIR therapy exerts a potent antiinflammatory effect via the induction of HO-1. The ability of FIR therapy to inhibit inflammation may play a critical role in preserving blood flow and patency of AVFs in hemodialysis patients.
منابع مشابه
Niacin Inhibits Vascular Inflammation via the Induction of Heme Oxygenase-1 Running title: Wu et al.; Anti-inflammatory properties of niacin
Background-Heme oxygenase-1 (HO-1) is a cytoprotective protein whose expression is
متن کاملنقش سیستم هم اکسیژناژ بر روی رشد تومور ملانوما در موش های نژاد C57Bl6
Background and Objective: Some evidence about the relationship between heme oxygenase and many cancers is available. Heme oxygenase has anti-apoptotic effects and contributes to tumor growth. The aim of this study was to evaluate the effect of heme oxygenase on melanoma tumor cells mitosis and tumor size in C57BL/6 mice. Materials and Methods: B16F10 melanoma cells were injected subcutaneously ...
متن کاملNiacin Inhibits Vascular Inflammation via the Induction of Heme Oxygenase-1
Background—Heme oxygenase-1 (HO-1) is a cytoprotective protein whose expression is consistently associated with therapeutic benefits in a number of pathological conditions such as atherosclerotic vascular disease and inflammation. Niacin is a pleiotropic drug that slows the progression of coronary artery disease and increases serum levels of the HO-1 enzymatic product bilirubin. This study asks...
متن کاملLetter by Vitek et al regarding article, "niacin inhibits vascular inflammation via the induction of heme oxygenase-1".
BACKGROUND Heme oxygenase-1 (HO-1) is a cytoprotective protein whose expression is consistently associated with therapeutic benefits in a number of pathological conditions such as atherosclerotic vascular disease and inflammation. Niacin is a pleiotropic drug that slows the progression of coronary artery disease and increases serum levels of the HO-1 enzymatic product bilirubin. This study asks...
متن کاملEpigallocatechin-gallate stimulates NF-E2-related factor and heme oxygenase-1 via caveolin-1 displacement.
Flavonoids, such as the tea catechin epigallocatechin-gallate (EGCG), can protect against atherosclerosis by decreasing vascular endothelial cell inflammation. Heme oxygenase-1 (HO-1) is an enzyme that plays an important role in vascular physiology, and its induction may provide protection against atherosclerosis. Heme oxygenase-1 can be compartmentalized in caveolae in endothelial cells. Caveo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Arteriosclerosis, thrombosis, and vascular biology
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2008